Chem 12	Name:
Unit 1 Review Questions so far	Date:

PLEASE NOTE! The chemical reactions given throughout this worksheet ARE NOT BALANCED!

- 1. Ozone is an important component of the atmosphere that protects us from the ultraviolet rays of the Sun. Certain pollutants encourage the decomposition of Ozone:
- $O_3(g) \rightarrow O_2(g)$, at a rate of 6.5 X 10⁻⁴ M/s. (remember that M =) How many molecules of O_2 gas are formed in each litre of atmosphere every day by this process?
- 2. Propane gas combusts in camp stoves to produce energy to heat your dinner. Assume that the gas is combusted at a rate of 1.10 g of C_3H_8 /min. How long would it take to produce 6.75 L of CO_2 gas measured at STP?
- 3. A 2.65 g sample of calcium metal is placed into water. The metal is completely consumed in 25.0 s. Assuming the density of water is 1.00 g/ml at the reaction temperature, how long would it take to consume 5.00 mL of water as it converts into products?
- 4. Consider the following reaction:

$$Cu(s) + HNO_3(aq) \rightarrow CuNO_3(aq) + H_2O(l) + NO_2(g)$$

- a) if 5.00 g of copper solid is completely reacted in 250.0 mL of excess nitric acid in 7.00 min. at STP, calculate the rate of the reaction in:
- i) g Cu/min.
- ii) mol HNO₃/min.
- iii) g NO₂/min
- b) Assume the reaction continues at this average rate for 10.0 min total time. Determine the final:
- i) mL NO₂ formed at STP
- ii) molarity of CuNO₃
- c) Describe SIX ways you might measure the reaction rate. Include the equipment required, measurements made, and units for the rate. You may use a labeled diagram.

5. Consider the graph for this reaction:

$$CaCO_3(s) + HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$$

- a) Determine the instantaneous rate at the following times:
- i) the instant after 0 min. ("initial rate")
- ii) 1 min.
- iii) 4 min.
- b) How do these rates compare? What do you suppose causes this pattern?
- 6. Given the following reactants, complete this reaction:

$$Sr(s) + HCl(aq) \rightarrow$$

Given the following data:

- a) Calculate the average rate of reaction in moles of HCl consumed per second over the first 50.0 s.
- b) Calculate the mass of strontium consumed in this 50.0s period.
- c) Why did the volume of gas collected decrease in each increment until 50.0 s?
- d) Why did the volume of gas remain unchanged from 50.0 s to 60.0 s?

5. Consider the graph for this reaction:

$$CaCO_3(s) + HCI(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

- a) Determine the instantaneous rate at the following times:
- i) the instant after 0 min. ("initial rate")
- ii) 1 min.
- iii) 4 min.

- b) How do these rates compare? What do you suppose causes this pattern?
- 6. Given the following reactants, complete this reaction:

$$Sr(s) + HCl(aq) \rightarrow$$

Given the following data:

	Time (seconds)	Volume of Hydrogen at STP (mL)
ĺ	0	0
	10.0	22.0
I	20.0	40.0
ĺ	30.0	55.0
	40.0	65.0
	50.0	72.0
	60.0	72.0

- a) Calculate the average rate of reaction in moles of HCl consumed per second over the first 50.0 s.
- b) Calculate the mass of strontium consumed in this 50.0s period.
- c) Why did the volume of gas collected decrease in each increment until 50.0 s?
- d) Why did the volume of gas remain unchanged from 50.0 s to 60.0 s?