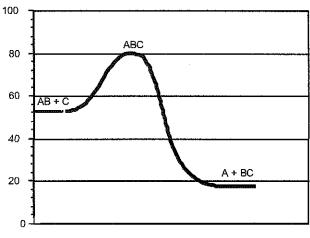

Chemistry 12

Unit 1-Reaction Kinetics

<u>Chemistry 12</u> Worksheet 1-2 - Potential Energy Diagrams

USE THE POTENTIAL ENERGY DIAGRAM TO ANSWER THE OUESTIONS BELOW:



- 1. Is the overall reaction as shown exothermic or endothermic?
- 2. What is the activation energy for the forward reaction?
- 3. What is the activation energy for the reverse reaction?
- 4. What is the enthalpy change of reaction (H) for the forward reaction?
- 5. What is the H for the reverse reaction?
- 6. Is the reverse reaction exothermic or endothermic?
- 7. Which species forms the activated complex?
- 8. Which species or set of species has the highest potential energy?

Chemistry 12	Unit 1-Reaction Kinetics
7 Will and the state of the sta	.a

). ¹	Which species or set of species has the highest kinetic energy?
10.	Which species or set of species has the weakest bonds?
11.	Which species or set of species has the strongest bonds?
12.	What is H for the reaction: $X_2Y_2 \rightarrow X_2 + Y_2$?
13.	Which do you think would be faster, the forward reaction or the reverse reaction?
	Explain.
14.	Which species or set of species has the <i>lowest</i> kinetic energy?
15.	Show the ΔH , the Activation Energy for the <i>forward</i> reaction and the Activation Energy for the <i>reverse</i> reaction on the graph above.
16.	As reactant particles approach each other before a collision, the <i>Potential</i> Energy goes
	while the Kinetic Energy goes
17.	As particles of newly formed products move away from one another, the <i>Potential</i> Energy
	goes, while the Kinetic Energy goes
18,	As reactant molecules approach each other, they exert
	forces on each other. Thus, as they move together, their speed
	and their Potential Energy
10	State the magning of Activated Compley

20. Use the following Potential Energy Diagram to answer the questions below:

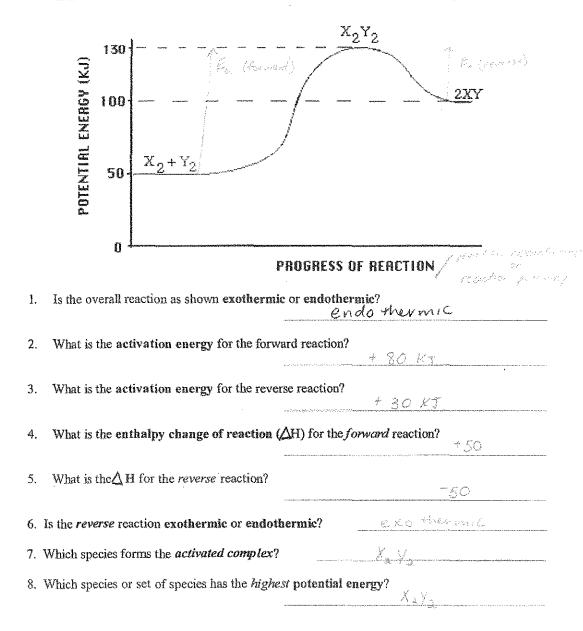
Progress of Reaction

a) Determine the Activation Energy for the forward reaction	_kJ
b) Determine the Activation Energy for the reverse reaction	_kJ
c) What is the <i>Enthalpy Change</i> (ΔH) for the <i>forward</i> reaction?	_kJ
d) What is the <i>Enthalpy Change</i> (ΔH) for the <i>reverse</i> reaction?	_kJ
e) The forward reaction isthermic.	
f) The reverse reaction isthermic.	
g) Which species or set of species forms the Activated Complex?	
h) Which bond is stronger, AB or BC? Give a reason for	
your answer.	w .
· ·	
i) Particles from which species or set of species is moving the fastest?	<u></u>
State how you arrived at your answer.	

Chemistry 12	Unit 1-Reaction Kinetics
j) Particles from which species or set of species is moving <i>most</i> . State how you arrived at your answer.	slowly?
k) The compound "AB" is a gas and the element "C" is a solid. I grinding "C" into a fine powder have on the graph shown her	
21. State the meaning of Activation Energy.	
22. What two requirements must be met before a collision between t fective? 1.	wo reactant particles is
Describe what happens to two reactant particles which collide was Activation Energy.	ith less energy than the
24. Burning coal (Carbon) is a highly exothermic reaction. However air at room temperature has such a slow reaction that it is not no two facts with the help of a Potential Energy Diagram. Potential Energy (KJ)	

Progress of Reaction

Đ.

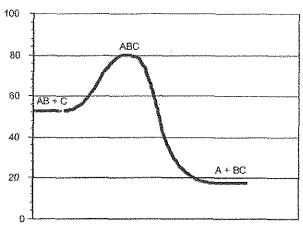

Key

Chemistry 12

Unit 1-Reaction Kinetics

<u>Chemistry 12</u> Worksheet 1-2 - Potential Energy Diagrams

USE THE POTENTIAL ENERGY DIAGRAM TO ANSWER THE QUESTIONS BELOW:



Che	mistry 12 Unit 1-Reaction Kinetics
9. V	Which species or set of species has the highest kinetic energy?
10.	Which species or set of species has the weakest bonds?
11.	Which species or set of species has the <i>strongest</i> bonds?
12.`	What is $\triangle H$ for the reaction: $X_2Y_2 \rightarrow X_2 + Y_2$?
13.	Which do you think would be faster, the forward reaction or the reverse reaction?
	reverse Explain smaller
	Ea 100 de to a foster readir.
14.	Which species or set of species has the <i>lowest</i> kinetic energy?
15.	Show the , the Activation Energy for the forward reaction and the Activation Energy for the reverse reaction on the graph above.
16.	As reactant particles approach each other before a collision, the <i>Potential</i> Energy goes ψ ,
	while the Kinetic Energy goes down.
17.	As particles of newly formed products move away from one another, the Potential Energy
	goes down, while the Kinetic Energy goes
18.	As reactant molecules approach each other, they exert repulsive
	forces on each other. Thus, as they move together, their speed
	and their Potential Energy GOV COSES
19.	State the meaning of Activated Complex accounse then to a rooms at the
	top of the populated energy "hill" or beiner
	r-francision sience between reoctants and products

Chemistry 12

Unit 1-Reaction Kinetics

20. Use the following Potential Energy Diagram to answer the questions below:

Progress of Reaction

a) Determine the Activation Energy for the forward reaction	127	k.
b) Determine the Activation Energy for the reverse reaction	+ 64	机
c) What is the <i>Enthalpy Change</i> (ΔH) for the <i>forward</i> reaction?	36	k.
d) What is the Enthalpy Change (ΔH) for the reverse reaction?	* 36	k)
e) The forward reaction is <u>CXO</u> thermic.		
f) The reverse reaction is <u>fndo</u> thermic.	•	
g) Which species or set of species forms the Activated Complex?	<u> 1965</u>	
h) Which bond is stronger, A-B or B-C?	e a reason for	
your answer. lower PE (more stoble): It tok	f verbil gal	nijy.
(69 KJ) to Break Box them to break 1	4-13 (2815)	
i) Particles from which species or set of species is moving the fastest?	A±B	jn met
State how you arrived at your answer.	ighest KE	

Chemistry 12

Unit 1-Reaction Kinetics

		j) Particles from which species or set of species is moving most slowly? ABC State how you arrived at your answer. had because of species is moving most slowly?
		State now you arrived at your answer.
		k) The compound "AB" is a gas and the element "C" is a solid. What effect would
		grinding"C" into a fine powder have on the graph shown here?
i en ekoy	21.	State the meaning of Activation Energy. When some KE proceeds professors
e the end f consol to form of the next to see 31	gusca (I)	must posses in order to form the active tell complex
e cherryol tr	735 416	· Diane a succession collision)
e - 44.44	22.	What two requirements must be met before a collision between two reactant particles is
		dfective?
		1. Sufficient energy (ZE) to form active tel complete
		2 favorable collision geometre (aligninesis)
	23.	Describe what happens to two reactant particles which collide with less energy than the Activation Energy.
		bounce off each other unthanged
	24.	Burning coal (Carbon) is a highly exothermic reaction. However coal, in contact with air at room temperature has such a slow reaction that it is not noticeable. Explain these two facts with the help of a Potential Energy Diagram. Potential
		Potential Energy (KJ)
		(highly exothering)
		Progress of Scacooy
		Constant post of the second
	Worl	ksheet 1-2 Potential Energy Diagrams Page 4