Chemistry 12 Unit 2 - Chemical Equilibrium Worksheet 2.1 - Equilibrium, Enthalpy and Entropy

Give <i>j</i>	four things which are true about a system at equilibrium:
1	
2	
3.	
What	is meant by <i>macroscopic properties</i> ?
Gives	some examples of macroscopic properties:
	happens to macroscopic properties <i>at equilibrium</i> ?
How	do the rates of the forward and reverse reaction compare at equilibrium?
Do the	e forward and reverse reactions stop at equilibrium?
What	can be said about the concentrations of all reactants and products at equilibriu
Why i	is chemical equilibrium called <i>dynamic equilibrium</i> ?

10.		sufficient activation energy, a system <i>not at equilibre</i>	-
11.	System	ns will tend toward a position of	enthalpy.
12.	System	ns will tend toward a position of	entropy.
13.		The the react of the following is <i>endothermic</i> or <i>exothermic</i> or <i>exothermic</i> or <i>exothermic</i> or <i>enthalpy</i> , the <i>reactants</i> or the <i>products</i> :	ermic and state which has
	a.	$Cl_{2(g)} + PCl_{3(g)} \rightleftharpoons PCl_{5(g)} \Delta H = -92.5 \text{ kJ}$	
		thermic and the	have minimum enthalpy.
	b.	$2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)} \Delta H = 92.4 \text{ kJ}$	
		thermic and the	have minimum enthalpy.
	c.	$CH_{4(g)} + H_2O_{(g)} + 49.3 \text{ kJ} \iff CO_{(g)} + 3H_{2(g)}$	
		thermic and the	have minimum enthalpy.
14.	If the	e reaction: $Cl_{2(aq)} \iff Cl_{2(g)} \qquad \Delta H = +25 \text{ kJ}$	
	was j	proceeding to the <i>right</i> , the enthalpy would be	ing. Is this a
	favoi	<i>urable</i> change?	
15.	If the	e reaction: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + 92.4 k$	J
	was j	proceeding to the <i>right</i> , the enthalpy would be	ing. Is this a
	favoi	urable change?	

Chemistry 12

Unit 2 - Chemical Equilibrium

16.	For	each of the following,	decide whether the <i>reactan</i>	nts or the <i>products</i> have <i>greater entropy</i> :	
	a)	$I_{2(s)} \rightleftharpoons I_{2(g)}$ Th	2	have greater entropy.	
	b)	$4PH_{3(g)} \rightleftharpoons P_{4(g)} +$	6H _{2(g)}		
		The		have greater entropy.	
	c)	$NH_{3(g)} \rightleftharpoons NH_{3(aq)}$			
		The		have greater entropy.	
17.	Wh	en the two tendencies	oppose each other (one favo	ours reactants, the other favours	
	pro	ducts), the reaction wil	l		
	Pro	cesses in which <u>both</u> th	e tendency toward <i>minimu</i>	<i>m enthalpy</i> and toward <i>maximum</i>	
	enti	<i>ropy</i> favour the <u>produc</u>	<u>ts</u> , will		
	Pro	cesses in which <u>both</u> th	e tendency toward <i>minimu</i>	<i>m enthalpy</i> and toward <i>maximum</i>	
	enti	<i>ropy</i> favour the <u>reactan</u>	<u>uts</u> , will		
18.	whi	ch has <i>maximum entr</i>		<i>minimum enthalpy</i> (reactants or products), f the reactants are mixed, what will all).	
	a) 4	$HCl_{(g)} + O_{2(g)} \rightleftharpoons 2$	$H_2O_{(g)} ++ 2Cl_{2(g)} +114.4$	4 kJ	
		The		have minimum enthalpy.	
		The		have maximum entropy.	
	If $HCl + O_2$ are put together, what should happen?(go to completion/ reach a st equilibrium/not occur at all)				
	b)	$CO_{2(g)} + H_{2(g)} \iff CO_{(g)} + H_2O_{(g)}; \Delta H = 42.6 \text{ kJ}$			
		The		have minimum enthalpy.	
		How does the entrop If $CO_{2(g)} ++ H_{2(g)}$			

	c)	$4PH_{3(g)} \rightleftharpoons$	$P_{4(s)}$ + $6H_{2(g)}$ + 37	kJ	
		The		has/have minimum enthalpy.	
		The		has/have maximum entropy.	
		If PH _{3(g)} was put in a flask, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)			
19.	Do sy	stems always rea		t equilibrium?	
	Expla	in			
20.	Do systems always reach <i>maximum entropy</i> at equilibrium?				
	Expla	in			
21.	A "he	at term" in a che	mical equation shows wh	at is happening to the	
	and re (Answe	eally has nothing ers are either entropy o	to do with the		
22.	As a reaction approaches equilibrium, the rate of the forward reaction				
	while the rate of the reverse reaction				
	Once equilibrium is reached, the rates become				
23.	Consi	der the reaction:	$BaCO_{3(s)} + heat \rightleftharpoons$	$BaO_{(s)} + CO_{2(g)}$	
		h one of the follo ved <i>equilibrium</i> ?		ndicate that the reaction has most likely	
	b) c)	The concentration All the BaCO ₃			
			· -	7	
24.	Consi	der the following	g reaction: $Fe^{3+}(aq) ++$	$SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$	
	A solu establ) ₃ is added to a solution o	f KSCN. As equilibrium is being	
		· ·	anc	l the [FeSCN ²⁺]	