SAMPLE EXERCISES max S vs. min H ANSWER KEY

PREDICT WHICH DIRECTION maximum ENTROPY (S) & minimum ENTHALPY (H) PREFER IN THE FOLLOWING <u>REVERSIBLE</u> REACTIONS ("at equilibrium"). BE SURE TO JUSTIFY YOUR CHOICE WITH A CLEAR REASON FOR min. H and at least two reasons (or the most you can find) for max S <u>IN EACH CASE</u>!

NH₄⁺(aq) $+ NO_3$ (aq) +kJ ≓ 4. $NH_4NO_3(s)$ ← Min H \rightarrow max S **ENDOTHERMIC** More Moles *More Variety* Aqueous ions have more entropy than solid compound *More moles of the random order (Aq ions vs. Solid)* $C_2H_2(g) + 5/2 O_2(g) \rightleftharpoons 2CO_2(g) + H_2O(g) + 1260kJ$ 5. $\leftarrow \max S$ \rightarrow min H More Moles (by ¹/₂ mole) **EXOTHERMIC** No other reason can be found. If I am desperate for a second reason, I can always use: "The Second Law of Thermodynamics" Which states that energy cannot be used to do work, without a loss to entropy. (reading this reaction in reverse, which is the direction that entropy prefers, the energy is put INTO the reaction, so *entropy will result, if this reaction goes from right to left)* $SO_3(g) + 100kJ$ 6. $SO_2(g)$ $+ 1/2 O_2(g)$ \rightleftharpoons $\leftarrow \max S$ \rightarrow min H More Moles **EXOTHERMIC** More Variety of Molecules 7. 2HCI(g) + kJ $H_2(g) + Cl_2(g)$ \rightleftharpoons ← Min H \rightarrow max S **ENDOTHERMIC** EQUAL Moles, hoewever, more variety of molecules "The Second Law of Thermodynamics" \Rightarrow Mg²⁺(aq) + H₂(g) + kJ $Mg(s) + 2H^{+}(aq)$ 8. $\leftarrow \max S$ \rightarrow min H More Moles **EXOTHERMIC** "The Second Law of Thermodynamics" 9. $2KCIO_3(s) + kJ$ ⇄ $2KCI(s) + 3O_2(g)$ ← Min H \rightarrow max S **ENDOTHERMIC** More Moles More Variety of Molecules *More phases of matter* More moles of a random phase 10. $NH_3 + HCl$ ⇄ $NH_4Cl + 180 kJ$ $\leftarrow \max S$ \rightarrow min H **EXOTHERMIC** More Moles

More Variety of Molecules

11. $H_2O_2(I) + kJ$ $\leftarrow Min H$ ENDOTHERMIC → H₂O(l) + 1/2 O₂(g)
 →max S
 More Moles
 More Phases of matter
 More random phase on the product side (there is a gas now)

12. $2H_2(g) + O_2(g)$ $\leftarrow \max S$ More Moles More Variety of Molecules 2H₂O(g) + kJ → min H EXOTHERMIC

 \rightleftharpoons

13. $ZnCl_2(s) + kJ$ $\leftarrow Min H$ ENDOTHERMIC $\Rightarrow Zn^{2+}(aq) + 2Cl(aq)$ $\Rightarrow max S$ More Moles Ions versus atoms (Aq vs. S) More variety of particles