Worksheet 3.5: Mole Reaction Equations

REMEMBER to start by balancing the equations!

1	C ₂ H ₆	+	O ₂	\rightarrow	CO ₂	+	H ₂ O
a)	10. moles						
b)					0.20 moles		

Parts a) and b) are completely separate (unrelated) scenarios

2	Mg3N2	+	H ₂ O	\rightarrow	Mg(OH)2	+	NНз
a)							0.48 moles
b)	36 moles						

For each of the following word problems, you should SHOW your CHECK of the LAW of CONSERVATION of MASS.

- 3- A reaction between tin and oxygen produced 68.6 g of SnO₂ (the only product). How many grams of tin and oxygen were involved?
- 4- A reaction between phosphorus and hydrogen yielded 10.5 g of phosphorus trihydride. How many grams of phosphorus and hydrogen were needed for the reaction?
- 5- Zinc and sulphur combine chemically to produce ZnS. How many grams of *the sulphide* are produced if 25.9 g of zinc reacts with sulphur? How many grams of sulphur were needed?
- 6- In the thermite process, aluminum reacts with Fe₃O₄ to give Al₂O₃ and iron. We will learn, in Chemistry 11, that compounds with unpredictable charges, such as in the Fe₃O₄, are completely possible!

 If 40.2 g of iron are produced, find the masses of the other chemicals involved.

Wkst 3.5: Mole Reaction Equations ANSWER KEY

1- $2C_2H_6$ + $7O_2$ \rightarrow $4CO_2$ + $6H_2O$

a) 10. moles 35 moles 20. moles 30. moles b) 0.10 moles 0.35 moles 0.20 moles 0.30 moles

2- Mg_3N_2 + $6H_2O$ \rightarrow $3Mg(OH)_2$ + $2NH_3$

a) 0.24 moles 1.4 moles 0.72 moles 0.48 moles

b) 36 moles 220 mol 110 moles 72 moles

3. ? Moles of $SnO_2 = (1 \text{ mole} / 151 \text{ g}) (68.6 \text{ g}) = 0.454 \text{ moles } SnO_2$

Sn + O_2 \rightarrow Sn O_2

 $?gO_2 = (32.0g/mole)(0.454moles) = 14.5g O_2$

?gSn=(119g/mole)(0.454moles)=54.0g Sn

Check:

 Σ mass of reactants = Σ mass of products 54.0g+14.5g=68.6g 68.5g=68.6g Good!

- 4. The reaction needed 9.59 g of phosphorus and 0.937 g of hydrogen.
- 5. 12.7 g of sulphur were required to react with the zinc to produce 38.6 g of zinc sulphide.
- **6.** Mass of Al=17.3g Mass of Fe₃O₄ = 55.4 g Mass of Al₂O₃ = 32.6 g