Worksheet 3.5: Mole Reaction Equations

REMEMBER to start by balancing the equations!

1	$\mathrm{C}_{2} \mathrm{H}_{6}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
a)	10. moles						
b)					0.20 moles		

Parts a) and b) are completely separate (unrelated) scenarios

2	$\mathrm{Mg}_{3} \mathrm{~N}_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\mathrm{Mg}(\mathrm{OH})_{2}$	+	NH_{3}
a)							0.48 moles
b)	36 moles						

For each of the following word problems, you should SHOW your CHECK of the LAW of CONSERVATION of MASS.

3- A reaction between tin and oxygen produced 68.6 g of SnO_{2} (the only product). How many grams of tin and oxygen were involved?

4- A reaction between phosphorus and hydrogen yielded 10.5 g of phosphorus trihydride. How many grams of phosphorus and hydrogen were needed for the reaction?

5- Zinc and sulphur combine chemically to produce ZnS . How many grams of the sulphide are produced if 25.9 g of zinc reacts with sulphur? How many grams of sulphur were needed?

6- In the thermite process, aluminum reacts with $\mathrm{Fe}_{3} \mathrm{O}_{4}$ to $\mathrm{give}_{\mathrm{Al}_{2} \mathrm{O}_{3} \text { and iron. }}$
We will learn, in Chemistry 11, that compounds with unpredictable charges, such as in the $\mathrm{Fe}_{3} \mathrm{O}_{4}$, are completely possible!
If 40.2 g of iron are produced, find the masses of the other chemicals involved.

Wkst 3.5: Mole Reaction Equations ANSWER KEY

1-	$2 \mathrm{C}_{2} \mathrm{H}_{6}$	+	$7 \mathrm{O}_{2}$	$\rightarrow 4 \mathrm{CO}_{2}+$	$6 \mathrm{H}_{2} \mathrm{O}$
a)	10. moles		35 moles	20. moles	30. moles
b)	0.10 moles		0.35 moles	0.20 moles	0.30 moles
2-	$\mathrm{Mg}_{3} \mathrm{~N}_{2}$	+	$6 \mathrm{H}_{2} \mathrm{O} \rightarrow$	$3 \mathrm{Mg}(\mathrm{OH})_{2}$	$+2 \mathrm{NH}_{3}$
a)	0.24 moles		1.4 moles	0.72 moles	0.48 moles
b)	36 moles		220 mol	110 moles	72 moles

3. ? Moles of $\mathrm{SnO}_{2}=(1 \mathrm{~mole} / 151 \mathrm{~g})(68.6 \mathrm{~g})=0.454$ moles SnO_{2}

| Sn |
| :--- | :--- | :--- |
| 0.454 moles |$+\mathrm{O}_{2} \xrightarrow{\rightarrow} \quad \rightarrow \quad$| SnO_{2} |
| :--- |
| 0.454 moles |

$? \mathrm{gO}_{2}=(32.0 \mathrm{~g} / \mathrm{mole})(0.454 \mathrm{moles})=14.5 \mathrm{~g} \mathrm{O}_{2}$
?gSn=(119g/mole)(0.454moles) $=54.0 \mathrm{~g} \mathrm{Sn}$

Check:

Σ mass of reactants $=\Sigma$ mass of products
$54.0 \mathrm{~g}+14.5 \mathrm{~g}=68.6 \mathrm{~g}$
$68.5 \mathrm{~g}=68.6 \mathrm{~g}$
Good!
4. The reaction needed 9.59 g of phosphorus and 0.937 g of hydrogen.
5. 12.7 g of sulphur were required to react with the zinc to produce 38.6 g of zinc sulphide.
6. Mass of $\mathrm{Al}=17.3 \mathrm{~g}$ Mass of $\mathrm{Fe}_{3} \mathrm{O}_{4}=55.4 \mathrm{~g}$ Mass of $\mathrm{Al}_{2} \mathrm{O}_{3}=32.6 \mathrm{~g}$

