Chemical Equilbrium Notes after IRE analysis

- HOMEWORK ASSIGNMENT: H vs. S - min enthalpy and max entropy review

THE EQUILIBRIUM CONSTANT

Consider the reaction $\quad \mathrm{A}+\mathrm{B} \rightleftarrows \mathrm{C}+\mathrm{D}$

$$
\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}
$$

($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ coefficients used to balance the chem eqn)

RECALL FROM UNIT ONE:

Assuming one step reactions,

$$
\begin{aligned}
& \mathrm{vf}_{\mathrm{f}}<[\mathrm{A}]^{\mathrm{a}} \\
& \mathrm{vf}_{\mathrm{f}}<[\mathrm{B}]^{\mathrm{b}} \\
& \mathrm{vf}_{\mathrm{f}} \propto[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}] \mathrm{b} \\
& \mathrm{vf}_{\mathrm{f}}=\mathrm{kff}^{\mathrm{b}}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}
\end{aligned}
$$

If the forward reaction is a one step reaction, then the reverse reaction is a one step reaction:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{r}} \propto[\mathrm{C}]^{\mathrm{c}} \\
& \mathrm{v}_{\mathrm{r}} \propto[\mathrm{D}]^{\mathrm{d}} \\
& \mathrm{v}_{\mathrm{p}}<[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} \\
& \mathrm{v}_{\mathrm{r}}=\mathrm{k}_{\mathrm{r}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}
\end{aligned} \quad \boldsymbol{r}=\text { reverse reaction }
$$

AT CHEMICAL EQUILIBRIUM:

$$
\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{r}}
$$

(RATE OF FORWARD RN = RATE OF REVERSE RN)

$$
\mathrm{kf}_{\mathrm{f}}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}=\mathrm{k}_{\mathrm{r}}[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}
$$

By convention:

$$
\begin{aligned}
\mathrm{K}= & \frac{\mathrm{kf}}{\mathrm{kr}} \\
& \frac{\mathrm{kf}}{\mathrm{kr}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
\end{aligned}
$$

- K sometimes seen as K_{e} or K_{eq}
- K is the product (multiplication) of the products raised to their coefficients divided by the product of the reactants raised to their coefficients
- K has no units: kf_{f} and kr_{r} units cancel.

Roughly speaking, a K value above one indicates the forward reaction is favoured more than the reverse.
The larger K gets, the more the reaction goes right. (and conversely for smaller).
QUESTION:
Derive from first principles, the constant K for: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$

$$
\begin{aligned}
& \mathrm{vf} \propto\left[\mathrm{H}_{2}\right]^{\mathrm{X}} \quad \operatorname{vr} \boldsymbol{\propto}[\mathrm{HI}]^{\mathrm{Z}} \\
& \left.\mathrm{vf}<\mathrm{LI}_{2}\right] \text { y } \\
& \mathrm{vf} \propto\left[\mathrm{H}_{2}\right]^{\mathrm{X}}\left[\mathrm{I}_{2}\right] \mathrm{y} \\
& \mathrm{vf}_{\mathrm{f}}=\mathrm{kf}_{\mathrm{f}}\left[\mathrm{H}_{2}\right]^{\mathrm{X}}\left[\mathrm{I}_{2}\right] \mathrm{y} \\
& \text { ALWAYS ASSUME A ONE STEP REACTION - this is called an elementary process!! }
\end{aligned}
$$

Therefore the coefficients used to balance the equation are the exponents in the rate equation. (in Unit 1 we said that the coefficients used to balance the equation in the rate determining step are the exponents in the rate equation. We are assuming a one step mechanism, therefore the equation as written is the RDS.)

$$
\mathrm{vf}=\mathrm{kf}_{\mathrm{f}}\left[\mathrm{H}_{2}\right]^{1}\left[\mathrm{I}_{2}\right] 1 \quad \mathrm{vr}=\mathrm{kr}_{\mathrm{r}}[\mathrm{HI}]^{2}
$$

At equilibrium, $v f=\mathrm{v}_{\mathrm{r}}$ (RATE OF FORWARD RN = RATE OF REVERSE RN)
$\mathrm{kf}_{\mathrm{f}}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]=\mathrm{kr}_{\mathrm{r}}[\mathrm{HI}]^{2}$

SEE SPECIAL "K" TRAITS NEXT PAGE (next document) Keq notes

