LeChatelier and " K " calculations

1.5 mol of the $\mathrm{NO}_{2}(\mathrm{~g})$ is added to the 1.00 L equilibrium vessel. What is the new equilibrium concentration of all species? Graph both equilibrium concentrations on the same graph.

set limits $0<x<2$

$$
\begin{aligned}
{\left[\mathrm{SO}_{3}\right]=} & 3.0 \\
+ & \frac{0.84}{3.8}
\end{aligned}
$$

$$
\left[\mathrm{SO}_{2}\right]=\frac{4.0}{-\frac{0.84}{3.2}} \quad\left[\mathrm{NO}_{2}\right]=\frac{2.0}{-0.84}
$$

$$
\begin{aligned}
& 3=\frac{6+5 x+x^{2}}{8-6 x+x^{2}} \\
& 24-18 x+3 x^{2}=6+5 x+x^{2} \\
& 2 x^{2}-23 x+18=0 \\
& x=0.84 \\
& \begin{aligned}
{[N O]=} & 2.0 \\
& +\frac{0.84}{28}
\end{aligned}
\end{aligned}
$$

What was the stress imposed on this equilibrium system?
e(Give a numerical answer, as well as a solution statement).

$$
\begin{gathered}
3.0=\frac{(4.0)(3.0}{(3.0)(x} \\
3=\frac{4}{x-0.5} \\
3 x-1.5=4 \\
3 x=5.5 \\
x=1.832 \mathrm{FF}
\end{gathered}
$$

limit

$$
x>0.5
$$

The stress applied was the addition of $1.8 \mathrm{M} \mathrm{NO}_{2}$
3. Given:
a) $K=1.5 \times 10^{12}$
b) $K=0.15$
c) $\mathrm{K}=4.3 \times 10^{-15}$

Which one has a large ratio of products to reactants? WHY?

Qu \# 1: explain why it doesn't matter that I didn't take into account that sulphur is octatomic when I balanced my

$$
\begin{aligned}
& \text { equation. } \\
& K=\frac{\left[8 \mathrm{H}_{2}(\mathrm{~g})\right.}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{8}} \\
& {\left[\mathrm{H}_{2}\right]^{8}} \\
& \mathrm{~S}_{8}^{8}(\mathrm{~s}) \\
& \hline \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
&
\end{aligned} \text { oR } \quad K=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}_{2}\right]}
$$

Qn\#2: Is the given data at equilibrium?
(If K at this temperature is given as 14.3).
If not, what must happen for this system to be at equilibrium?
In your answer, we must start using the following notation:
(ea)
alphabetical order

$$
K_{T R I A C}=\frac{-100}{.100}=1
$$

$K_{e q} \stackrel{100}{ } K_{T}$ since $K_{\text {eq }}>K_{\text {TRiAL }}$ Since $K_{\text {Req }}>K_{\text {TR IA }}$
the system
must priced to the RIGHT to reach equilibrium and then. $\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right] \uparrow}{\left[\mathrm{H}_{2}\right] \downarrow}$ to achieve EQuIV.
If $K_{e q}=K_{T}$ it is AT EQuAL!

$$
\begin{aligned}
14.3 & =\frac{(.100+x)}{(.100-x)} \\
x & =0.087
\end{aligned}
$$

At equilibrium $\left[\mathrm{H}_{2} \mathrm{~S}\right]=.187$

$$
\left[\mathrm{H}_{2}\right]=.013
$$

Check $K=\frac{.187}{.013}=14.4 \Omega$

$$
[A]=.29 \quad[B]=.11,[C]=.06
$$ 2 decimal places!

$$
\begin{aligned}
& \text { Calculate all four []ai } K=2.00 \text {. } \\
& K=\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}] \\
& \text { set limits } \\
& 0<x<0.5 \\
& \sqrt{2.00}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\sqrt{(-5-x)^{2}}} \\
& \rightarrow X=0.293 \mathrm{M} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{co}^{2}\right]=.293 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]=.207 \mathrm{M}}
\end{aligned}
$$

bb. Given new E_{2} concentrations, calculate K and describe
what stresses could have caused this shift, resulting in these
E new concentrations:
$\begin{array}{llll}\mathrm{E}_{2} & .207 & .207 & .293 \\ 0.105 \mathrm{M} & 0.105 \mathrm{M} & 0.145 \mathrm{M} & 0.293 \\ \end{array}$
check K@E $2: \frac{(.145)^{2}}{(.105)^{2}}=1.91$ original $K e q=2.00$
Assume no dang ink
If Temp had charged, 10 Assume no del 2.0

$6 c$. Given new E_{2} concentrations, calculate K and describe No SHIFT ${ }^{1}$
what stressescould have caused this shift, resulting in these Moles equal on both sides!
$\mathrm{E} 3 \quad{ }^{0.240 \mathrm{M}}{ }^{0.0240 \mathrm{M}} \mathrm{K}=\frac{(.133)^{2}}{(.240)^{2}}=.307$
0.133 M
0.133 M

MUST be a Temp
$K \downarrow$ but don t know if cractione is endolexo So NoT sure if Temp Tor \downarrow

6d. Given new E_{2} concentrations, calculate K and describe why we could not explain a stress that would cause the concentrations to change to these numbers (i.e. why these "equilibrium" values would be impossible):

AND all reactants V How can that be?

Calculate how much $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was added to the E_{1} vessel if K at this temperature is equal to 1.29 .
LIMITS

$$
1.29=\frac{(.100+x)(.100)}{(.150)^{2}}
$$

$x=.190 \mathrm{M}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was added to the reaction vessel

6f. On a separate piece of paper (fill the page) graph the equilibrium values, stresses, shifts and new equilibrium values for questions \&ozare.

$$
6 e!
$$

