AVOGADRO'S HYPOTHESIS - SAMPLE PROBLEMS

KEY

PLEASE NOTE THAT $\mathrm{N}_{\mathrm{a}}=$ Avogadro's number $=6.02 \times 10^{23}$ molecules

1. There are 3.67×10^{32} molecules of nitrogen gas in a flask at STP. How many molecules of oxygen gas would be present in the same flask? 3.67×10^{32} molecules of oxygen gas.
From Avogadro's Hypothesis, we have learned that the number of moles (or molecules) of the gas in a sample at a given volume, temperature, and pressure does NOT depend on the identity of the gas.
2. 312 L of chlorine gas at STP. What mass of fluorine gas would be present at the same volume, temperature and pressure.
$312 \mathrm{~L} \times 1$ mole $/ 22.4 \mathrm{~L} \times 38.0 \mathrm{~g} / \mathrm{mole}=529 \mathrm{~g}$
2b. How many molecules would this be?
13.9 mole $\times \mathrm{N}_{\mathrm{a}}=8.37 \times 10^{24}$ molecules
3. What mass do 4.37×10^{32} molecules of ammonia gas possess?
4.37×10^{32} molecules $\times \mathrm{N}_{\mathrm{a}} \times 17.0 \mathrm{~g} /$ mole $=1.23 \times 10^{10} \mathrm{~g}$
4. 156 g of ammonia gas in a flask at STP. What mass of chlorine gas would fit in the same flask?
$156 \mathrm{~g} \times 1$ mole / $17.0 \mathrm{~g}=9.18$ moles
AVOGADRO'S HYPOTHESIS:
$(\mathrm{V}, \mathrm{T}, \mathrm{P}) \mathrm{NH}_{3}=(\mathrm{V}, \mathrm{T}, \mathrm{P}) \mathrm{Cl}_{2}$
\# of molecules of $\mathrm{NH}_{3}=\#$ of molecules of Cl_{2}
moles of $\mathrm{NH}_{3}=$ moles of Cl_{2}
9.18 moles $\times 71.0 \mathrm{~g} / \mathrm{mole}=651 \mathrm{~g}$
5. 211.5 g of fluorine gas at RTP. 178 g of oxygen gas in the same container at RTP. How many litres of each gas are present at RTP?
$211.5 \mathrm{~g} \times 1 \mathrm{~mole} / 38.0 \mathrm{~g} \times 24.5 \mathrm{~L} / \mathrm{mole}=136 \mathrm{LF} 2$
$178 \mathrm{~g} \times 1$ mole/32.0 $\mathrm{g} \times 24.5 \mathrm{~L} / \mathrm{mole}=136 \mathrm{~L} \mathrm{O} 2$
Due to Avogadro's hypothesis, the volume that both gases occupy will be equal, since the temperature and pressure conditions are the same, and the \# of moles is the same. (Check it! The number of moles of both gases is 5.57 moles)
6. A balloon holds 4678 g of He gas. What mass of hydrogen gas would it hold at identical conditions?
$4678 \mathrm{~g} \times 1$ mole $/ 4.00 \mathrm{~g} \mathrm{He} \times 2.02 \mathrm{~g} \mathrm{H} / \mathrm{mole}=2.36 \times 10^{3} \mathrm{~g}$
(V, T, P) He $=(V, T, P) H_{2}$
moles of $\mathrm{He}=$ moles of H_{2}
7. What mass of Neon gas would the balloon in \#6 hold (at identical conditions)?
1169.5 moles (from question 6) $\times 20.2 \mathrm{~g} \mathrm{Ne} /$ mole $=2.36 \times 10^{4} \mathrm{~g}$

7b. How do the molecules of hydrogen gas and Neon gas compare in mass?
$\underline{2.36 \times 10^{4} \mathrm{~g} \mathrm{Ne}}=10.0$
$2.36 \times 10^{3} \mathrm{~g} \mathrm{H}_{2}$
mass of Ne : mass of $\mathrm{H}_{2}=10: 1$ ratio
i.e. Neon gas' mass is 10 times the hydrogen gas' mass
8. How many molecules of carbon monoxide gas are present in 176 L of the gas at STP?
$176 \mathrm{~L} \times 1 \mathrm{~mol} / 22.4 \mathrm{~L} \times \mathrm{N}_{\mathrm{a}}=4.73 \times 10^{24} \mathrm{CO}$ molecules
9. A container holds 6.93 moles of ammonia gas at $42^{\circ} \mathrm{C}$ and 176 kPa . What mass of chlorine gas would the container hold at identical conditions?
6.93 moles $\times 71.0 \mathrm{~g} /$ mole $=491 \mathrm{~g} \mathrm{Cl}_{2}$
10. A container holds 302 g of gas " X ". The same container holds 75 g of oxygen gas under identical conditions. What is the molar mass of gas " X "?
$75 \mathrm{~g} \times 1$ mole $/ 32.0 \mathrm{~g} \mathrm{O}_{2}=2.3$ moles
302 g of gas " X " $=131.3 \mathrm{~g} /$ mole must be Xe
2.3 moles
11. Argon has a density of $1.784 \mathrm{~g} / \mathrm{L}$.

How many atoms are present in 220. mL of Argon gas?
$0.22 \mathrm{~L} \times 1.784 \mathrm{~g} / \mathrm{L} \times 1$ mole $/ 39.9 \mathrm{~g}$ Ar $\times \mathrm{N}_{\mathrm{a}}=5.91 \times 10^{21}$ Ar atoms
12. 361 L of $\mathrm{C}_{3} \mathrm{H}_{8}$ gas at STP. How many moles would exist at RTP?
$361 \mathrm{~L} \times 1$ mole / 22.4 L X $24.5 \mathrm{~L} /$ mole $=395 \mathrm{~L}$
We know to divide by STP and multiply by RTP
Since the temperature is going up, we expect the volume of the gas to get BIGGER.

