Wkst 1.1: Average Reaction Rate Calculations

1-
$$C_3H_{8(g)}$$
 + $5 O_{2(g)}$ \rightarrow $3 CO_{2(g)}$ + $4 H_2O_{(g)}$
3.00 15.0 9.00 12.0 mol/s mol/s mol/s

2- ? $mol H_2/min = (245 L/min) (1 mol/24.5 L) = 10.0 mol/min$

Al Rate = 6.66 mol/min HNO₃ Rate = 20.0 mol/min H₂ Rate = 10.0 mol/min Al(NO₃)₃ Rate = 6.66 mol/min

3- ? mol NaOH/s = (176 g / 15 s) (1 mol / 40.0 g) = 0.29 mol/s

NaOH Rate = 12 g/s H_2SO_4 Rate = 15 g/s Na_2SO_4 Rate = 21 g/s H_2O Rate = 5.2 g/s

4- ? L $N_2/min = (22.4 L/mol) (5.00 mol/min) = 112 L <math>N_2/min$

Since all gases are at STP, Avogadro's hypothesis applies.

$$3 F_{2(g)}$$
 + $2 NH_{3(g)}$ \rightarrow $N_{2(g)}$ + $6 HF_{(g)}$
 336 224 112 672
 L/min L/min L/min

5- Watch for excess stoichiometry! Use only amounts of chemicals that have reacted!

Fe₂S₃ Rate = 2.50 g/s HCl Rate = 2.63 g/s FeCl₃ Rate = 3.89 g/s H₂S Rate = 1.23 g/s