Wkst 1.4: Reaction Mechanisms

1. Consider the following reaction mechanism:

Step 1:	OCI-	+	H_2O	\rightarrow	HOCI	+	OH-	(fast)
Step 2:	l-	+	HOCI	\rightarrow	HOI	+	Cl-	(slow)
Step 3:	HOI	+	OH⁻	\rightarrow	H_2O	+	Ol-	(fast)

- a) Write the overall equation for the above process.
- b) Identify any intermediates/catalysts.
- c) What is most likely to happen to the rate of the reaction if we double the concentration of the iodide ion?
- 2. Ozone decomposes slowly in the atmosphere according to the overall equation:

$$2 O_{3(g)} \rightarrow 3 O_{2(g)}$$

Write a 2-step reaction mechanism for the process, using $O_{(g)}$ as an intermediate.

- 3. Ethane gas (C₂H₆) reacts with chlorine gas to give chloromethane gas (CH₃Cl). The rate of the reaction is dependent on the concentration of ethane gas. Write a 3-step reaction mechanism for the process.
- 4. The following 2-step reaction mechanism was determined:

Step 1:	H⁺	+	H_2O_2	\rightarrow	$H_3O_2^+$			(fast)
Step 2:	-	+	$H_3O_2^+$	\rightarrow	HIO	+	H_2O	(slow)

- a) Write the overall equation for the process.
- b) Which is the rate-determining step?
- c) To increase the rate of the reaction, which reactant's concentration should you increase? Explain.
- 5. Write a 4-step mechanism for the reaction

 N_2 + H_2 + $3 O_2 \rightarrow 2 HNO_3$

with HNO, N_2O_2 , and H_2O_2 as intermediates.