EXTRA PRACTICE PROBLEMS for HESS' LAW OF HEAT SUMMATION:

1. Given the following equations and $\Delta \mathrm{H}^{\circ}$ values, determine the heat of reaction (kJ) at 298 K for the reaction:

$$
2 \mathrm{OF}_{2}(\mathrm{~g})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SF}_{4}(\mathrm{~g})
$$

$$
\begin{array}{ll}
\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-276.6 \mathrm{~kJ} \\
\mathrm{SF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HF}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{0}=-827.5 \mathrm{~kJ} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-296.9 \mathrm{~kJ}
\end{array}
$$

Answer: -319.5 kJ
2. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{CH}_{4} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-37 \mathrm{~kJ}$
$\mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	$\Delta \mathrm{H}=-46 \mathrm{~kJ}$
$\mathrm{CH}_{4} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-65 \mathrm{~kJ}$

Answer: -18 kJ
3. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

```
\(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\)
    \(\Delta \mathrm{H}=-115 \mathrm{~kJ}\)
\(2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g})\)
\(\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})\)
    \(\Delta \mathrm{H}=-142.5 \mathrm{~kJ}\)
    \(\Delta \mathrm{H}=-43.7 \mathrm{~kJ}\)
```

Answer: -83 kJ
4. Calculate the value of $\Delta \mathrm{H}^{\circ} / \mathrm{kJ}$ for the following reaction using the listed thermochemical equations:

$$
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~g})+6 \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(\mathrm{~g})
$$

$1 / 4 \mathrm{P}_{4}(\mathrm{~s})+3 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-306.4 \mathrm{~kJ}$
$\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-2967.3 \mathrm{~kJ}$
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-84.2 \mathrm{~kJ}$
$\mathrm{PCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{3} \mathrm{PO}(\mathrm{g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-285.7 \mathrm{~kJ}$
Answer: -610.1 kJ

