Reaction Rate Review

1. $\mathrm{C}_{5} \mathrm{H}_{12}$ Rate $=\left(28.8 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{12} / 30 . \mathrm{S}\right)\left(1{\text { mole } \mathrm{C}_{5} \mathrm{H}_{12} / 72.0 \mathrm{~g} \mathrm{C}}_{5} \mathrm{H}_{12}\right)$ $=0.013 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12} / \mathrm{s}$

$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~g}^{\text {) }}$	+	$8 \mathrm{O}_{2(\mathrm{~g})}$	\rightarrow	$5 \mathrm{CO}_{2(\mathrm{~g})}$	$+$	$6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
0.013		0.10		0.065		0.078
$\mathrm{mol} / \mathrm{s}$		$\mathrm{mol} / \mathrm{s}$		$\mathrm{mol} / \mathrm{s}$		$\mathrm{mol} / \mathrm{s}$

2. N_{2} Rate $=\left(112 \mathrm{~L} \mathrm{~N} / 2 \mathrm{l}\right.$. s) $\left(1 \mathrm{~mole}_{2} / 22.4 \mathrm{~L}\right)=0.50 \mathrm{~mole} \mathrm{~N}_{2} / \mathrm{s}$
N_{2} Rate $=14 \mathrm{~g} / \mathrm{s}$
H_{2} Rate $=3.0 \mathrm{~g} / \mathrm{s}$
NH_{3} Rate $=17 \mathrm{~g} / \mathrm{s}$
3. $\quad \mathrm{C}_{2} \mathrm{H}_{6}$ Rate $=\left(1 \mathrm{~mole}_{2} \mathrm{H}_{6} / 30 . \mathrm{g} \mathrm{C}_{2} \mathrm{H}_{6}\right)\left(96 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} / 10 . \mathrm{min}\right)(1 \mathrm{~min} / 60 \mathrm{~s})$

$$
=0.0053 \mathrm{~mole} \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{s}
$$

$\mathrm{C}_{2} \mathrm{H}_{6}$ Rate $=0.16 \mathrm{~g} / \mathrm{s}$
O_{2} Rate $=0.42 \mathrm{~g} / \mathrm{s}$
CO Rate $=0.31 \mathrm{~g} / \mathrm{s}$
$\mathrm{H}_{2} \mathrm{O}$ Rate $=0.29 \mathrm{~g} / \mathrm{s}$
4. NH_{3} Rate $=25 \mathrm{~L} / \mathrm{min}$
O_{2} Rate $=43 \mathrm{~L} / \mathrm{min}$
NO_{2} Rate $=25 \mathrm{~L} / \mathrm{min}$
$\mathrm{H}_{2} \mathrm{O}$ Rate $=$ not gaseous so no rate in L/min
5. Watch out for excess stoichiometry! HCl is limiting reagent! H_{2} Rate $=3.4 \mathrm{~L} / \mathrm{min}$
6. The likelihood of 4 reactant particles having a simultaneous collision with appropriate energy and geometry is negligible. Reactions occur via collisions of 2 particles at a time. Two possible mechanisms are:

Or

$$
\begin{aligned}
& \mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} \\
& \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{O} \\
& \mathrm{H}_{2}+\mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
7.
a) Fast: only electrons being exchanged, homogeneous phase initially, simple mechanism
b) Slow: many bonds to break and form, complex reaction mechanism (many particles)
c) Medium: simple mechanism with few bonds to break and form, but mixed phases will slow the reaction
d) Slow: non-reactive inert gas
e) Fast: only electrons being exchanged, homogeneous phase initially, simple mechanism

