LeChatelier and "K" calculations

1.	SO ₂ (g)	+	NO ₂ (g)	₹	SO₃ (g)	+	NO (g)
E	4.0 M		0.50 M		3.0 M		2.0 M

1.5 mol of the $NO_2(g)$ is added to the 1.00 L equilibrium vessel. What is the new equilibrium concentration of all species? <u>Graph</u> both equilibrium concentrations on the same graph.

E ₁ 4.0 M 0.50 M 3.0 M	1 2.0 M
-----------------------------------	---------

R

 E_2

2.	SO ₂ (g)	+	NO ₂ (g)	₹	SO₃ (g)	+	NO (g)
E1	4.0 M		0.50 M		3.0 M		2.0 M
			+ X				
R							
E ₂					4.0 M		
_							

What was the stress imposed on this equilibrium system? (Give a numerical answer, as well as a solution statement).

3. Given:
a) K = 1.5 x 10¹²
b) K = 0.15
c) K = 4.3 x 10⁻¹⁵

Which one has a large ratio of products to reactants? WHY?

4. $H_2(g) + S(s) \rightleftharpoons H_2S(g) +$	· kJ
---	------

Given: 0.200mol X 0.200 mol 2.00 L 2.00 L

Qn # 1: explain why it doesn't matter that I didn't take into account that sulphur is octatomic when I balanced my equation.

 $8H_2(g) + S_8(s) \rightleftharpoons 8H_2S(g) + kJ$

Qn#2: Is the given data at equilibrium? (If K at this temperature is given as 14.3). If not, what must happen for this system to be at equilibrium?

In your answer, we must start using the following notation:

K_{eq} > / < / = K_{trial}

5.	A (g)	₹	2B (g)	+	C (g
I	<u>1.00 mol</u> 4.00 L				
R					
E			0.10 M		0.05 M
K =	2.5 x 10 ⁻³				
Calc	ulate [A] _e				
b.	A (g)	₹	2B (g)	+	C (g
E1			0.10 M		0.05 M
	+ 0.10 M				
R					
E ₂					

Calculate the new $[A]_e$ $[B]_e$ $[C]_e$ at the same temperature, under the stress that was imposed as shown in E₁.

6a. $H_2(g)$ + $CO_2(g)$ \rightleftarrows $H_2O(g)$ + CO(g)I 0.500 M 0.500 M ----- -----R E

Calculate all four []_e if K = 2.00.

6b. Given new E_2 concentrations, calculate K and describe what stresses could have caused this shift, resulting in these new concentrations:

E₂ 0.105 M 0.105 M 0.145 M 0.145 M

6c. Given new E_2 concentrations, calculate K and describe what stresses could have caused this shift, resulting in these new concentrations:

$E_2 = 0.240 \text{ M} = 0.240 \text{ M} = 0.133 \text{ M} = 0.133$	E ₂	0.240 M	0.240 M	0.133 M	0.133 M
---	----------------	---------	---------	---------	---------

6d. Given new E₂ concentrations, calculate K and describe why we could not explain a stress that would cause the concentrations to change to these numbers (i.e. why these "equilibrium" values would be impossible):

E ₂	H ₂ (g) 0.117 M	+	CO ₂ (g) 0.117 M	¥	H ₂ O (g) 0.133 M	+	CO (g) 0.133 M
6e. E1	H ₂ (g) 0.117 M	+	CO ₂ (g) 0.117 M	¥	H ₂ O (g) 0.133 M	+	CO (g) 0.133 M

R

E₂ 0.150 M

Calculate how much $H_2O(g)$ was added to the E_1 vessel if K at <u>this</u> temperature is equal to 1.29.

6f. On a separate piece of paper (fill the page) graph the equilibrium values, stresses, shifts and new equilibrium values for questions 6b and 6c.