LeChatelier and " K " calculations

1. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
E $\quad 4.0 \mathrm{M}$
0.50 M
3.0 M
2.0 M
1.5 mol of the $\mathrm{NO}_{2}(\mathrm{~g})$ is added to the 1.00 L equilibrium vessel. What is the new equilibrium concentration of all species? Graph both equilibrium concentrations on the same graph.
$\mathrm{E}_{1} \quad 4.0 \mathrm{M}$
0.50 M
3.0 M
2.0 M

R
E_{2}
2. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$

E_{1}	4.0 M	0.50
	$+\mathbb{X}$	

R
E_{2}
4.0 M

What was the stress imposed on this equilibrium system?
(Give a numerical answer, as well as a solution statement).
3. Given:
a) $K=1.5 \times 10^{12}$
b) $K=0.15$
c) $\mathrm{K}=4.3 \times 10^{-15}$

Which one has a large ratio of products to reactants? WHY?
4. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \quad \rightleftarrows \quad \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{kJ}$

Given:

$$
\frac{0.200 \mathrm{~mol}}{2.00 \mathrm{~L}}
$$

X
0.200 mol
2.00 L

Qn \# 1: explain why it doesn't matter that I didn't take into account that sulphur is octatomic when I balanced my equation.
$8 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{8}(\mathrm{~s}) \rightleftarrows 8 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{kJ}$

Qn\#2: Is the given data at equilibrium?
(If K at this temperature is given as 14.3).
If not, what must happen for this system to be at equilibrium?
In your answer, we must start using the following notation:
$K_{\text {eq }}$
$>1<1=$
$K_{\text {trial }}$

Calculate [A]e
b. $\quad \mathrm{A}(\mathrm{g})$
\rightleftarrows
2B (g) +
C (g
$\mathrm{E}_{1} \quad \square$
0.10 M
0.05 M

$$
\text { + } 0.10 \text { M }
$$

R
E_{2}

Calculate the new $[A]_{e}[B]_{e}[C]_{e}$ at the same temperature, under the stress that was imposed as shown in E_{1}.

$$
\begin{aligned}
& \text { 6a. } \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \\
& \text { I } \quad 0.500 \mathrm{M} \\
& \text { R }
\end{aligned}
$$

Calculate all four []e if $K=2.00$.

6b. Given new E_{2} concentrations, calculate K and describe what stresses could have caused this shift, resulting in these new concentrations:
E_{2}
0.105 M
0.145 M
0.145 M

6c. Given new E_{2} concentrations, calculate K and describe what stresses could have caused this shift, resulting in these new concentrations:
E_{2}
0.240 M
0.240 M
0.133 M
0.133 M

6d. Given new E_{2} concentrations, calculate K and describe why we could not explain a stress that would cause the concentrations to change to these numbers (i.e. why these "equilibrium" values would be impossible):

	$\mathrm{H}_{2}(\mathrm{~g})$ E_{2} 0.117 M$+\mathrm{CO}_{2}(\mathrm{~g})$		
0.117 M		\rightleftarrows	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
:---			
0.133 M	$+$	$\mathrm{CO}(\mathrm{g})$	
:---			
0.133 M			

6 e.	$\mathrm{H}_{2}(\mathrm{~g})$	+	CO_{2} (g)	\rightleftarrows	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$+$	CO (g)
E_{1}	0.117 M		0.117 M		0.133 M		0.133 M

R
$\mathrm{E}_{2} \quad 0.150 \mathrm{M}$
Calculate how much $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was added to the E_{1} vessel if K at this temperature is equal to 1.29 .

6f. On a separate piece of paper (fill the page) graph the equilibrium values, stresses, shifts and new equilibrium values for questions 6 b and 6 c .

