Trick or Treal MOLES

1. If you have $\mathbf{0 . 8 0 1}$ moles of acetic acid, how many molecules are there?
$\begin{aligned} 0.801 \mathrm{~mol} & \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}} \\ = & 4.82 \times 10^{23} \mathrm{CH}_{3} \mathrm{COOH} \text { molecules }\end{aligned}$ TREAT
2. How many atoms in $7.00 \times 10^{-6} \mathrm{~mol}$ of carbon?

$$
\begin{gathered}
7.00 \times 10^{-6} \mathrm{~mol} \times \frac{12 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol}} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \\
=5.06 \times 10^{19} \mathrm{C} \text { atoms }
\end{gathered}
$$

TRICK
*Because we don't need the converting to mass of carbon step because it is already in moles.
CORRECTION:

$$
\begin{gathered}
7.00 \times 10^{-6} \mathrm{~mol} \times \frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol}} \\
=4.214 \times 10^{30} \mathrm{C} \text { atoms }
\end{gathered}
$$

3. What is the molar mass of manganese (V) carbonite?
$\mathrm{Mn}_{2}\left(\mathrm{CO}_{3}\right)_{5}$
$2 \mathrm{Mn}+5 \mathrm{C}+15 \mathrm{O}$
$2(54.9)+5(12.0)+15(16.0)=250 . \mathrm{g} / \mathrm{mol}$
TRICK - the formula as written is manganese (V) carbonate CORRECTION:
$\mathrm{Mn}_{2}\left(\mathrm{CO}_{2}\right)_{5}$
manganese (V) carbonite
$2(54.9)+5(12.0)+10(16.0)=329.8 \mathrm{~g} / \mathrm{mol}$ (1 decimal place)
4. What is the mass of $0.15 \mathrm{~mol} \mathrm{NaNO}_{3}$?
$0.15 \mathrm{~mol} \times \frac{86.0 \mathrm{~g}}{1 \mathrm{~mol}}=12.75=13 \mathrm{~g}$

TREAT

5. What is the mass of 0.0027 mol of iron (III) chloride?
$1 \mathrm{Fe} 55.8 \quad 3 \mathrm{Cl}_{2} 71.0 \quad 268.8 \mathrm{~g} / \mathrm{mol}$
$0.0027 \mathrm{~mol} \times \frac{268.8 \mathrm{~g}}{1 \mathrm{~mol}}=0.73 \mathrm{~g}$

TRICK

CORRECTION: iron (III) chloride FeCl_{3}

* 1 Fe
$3 \mathrm{Cl} \leftarrow \mathrm{Cl}$ is not diatomic when it is combined with another element in a compound
$55.8+3(35.5)=162.3 \mathrm{~g} / \mathrm{mol}$
$0.0027 \mathrm{~mol} \times \frac{162.3 \mathrm{~g}}{1 \mathrm{~mol}}=0.44 \mathrm{~g}$

6. How many oxygen atoms are there in 0.0400 mol of aluminum oxalate, $\mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$?

$$
\begin{aligned}
& 0.0400 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \text { molecules }}{1 \mathrm{~mol}} \\
& \quad \times \frac{4.00 \text { oxygen atoms }}{1 \mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \text { molecule }} \\
& =9.63 \times 10^{22} O \text { atoms }
\end{aligned}
$$

TRICK

* $\mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$

CORRECTION: should have multiplied by $120 \leftarrow$ we have $\times 12$ not x4 O atoms...
\# 6 CORRECTION:

$$
\begin{aligned}
& 0.0400 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \text { molecules }}{1 \mathrm{~mol}} \\
& \quad \times \frac{12.0 \text { oxygen atoms }}{1 \mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \text { molecule }} \\
& =2.89 \times 10^{23} \mathrm{O} \text { atoms }
\end{aligned}
$$

7. What is the mass of $\mathbf{3 . 2 2} \mathbf{~ m o l}$ of elemental bromine?
(Elemental = found in nature)
$3.22 \mathrm{~mol} \times \frac{79.9 \mathrm{~g}}{1 \mathrm{~mol}}=257 \mathrm{~g} \mathrm{Br}$
TRICK
$\mathrm{Br}=2$ = diatomic
*wrong because elemental bromine exists in form of $\mathrm{Br}_{2} \ldots$
CORRECTION: So $79.9 \mathrm{~g} \times 2=159.8 \mathrm{~g} / \mathrm{mol}$
$3.22 \mathrm{~mol} \times \frac{159.8 \mathrm{~g}}{1 \mathrm{~mol}}=515 \mathrm{~g} \mathrm{Br}$
8. How many moles are in $\mathbf{3 8} \mathrm{g}$ uranium (V) oxide?
$38 g U_{2} O_{5} \times \frac{1 \mathrm{~mol}}{556 g U_{2} O_{5}}=0.068 \mathrm{~mol}$
TREAT
*Because $U=237(2)+O=16(5)=556$
9. What is the molar mass of copper (II) chloride pentahydrate?
$63.5+2(35.5)+10(1.01)+5(16.0)=224.6 \mathrm{~g} / \mathrm{mol}$
TREAT

* $\mathrm{CuCl}_{2} \bullet 5 \mathrm{H}_{2} \mathrm{O}$

10. How many H atoms are in 70.00 g ammonium fluoride?

$$
\begin{gathered}
70.00 \mathrm{~g} \mathrm{NH}_{4} F \times \frac{1 \mathrm{~mol}}{37.0 \mathrm{~g} \mathrm{NH}}{ }_{4} F
\end{gathered} \frac{6.02 \times 10^{23} \mathrm{molecules}}{1 \mathrm{~mol}} .
$$

TREAT

*Because first changing the mass to the mole then changing mole to number of molecules then finally changing the number of molecules to number of H atoms.

11. What is the mass of 5.2 mol of thallium?

$5.2 \mathrm{~mol} \times \frac{232 \mathrm{~g}}{1 \mathrm{~mol}}=1.2 \times 10^{3} \mathrm{~g}$
TRICK
CORRECTION: *Not right because the molar mass of thallium is 202.4 g not 232 g . Thus changing the answer to:

$$
5.2 \mathrm{~mol} \times \frac{204.4 \mathrm{~g}}{1 \mathrm{~mol}}=1.06 \times 10^{3} \mathrm{~g}
$$

12. What is the molar mass of elemental phosphorus?
$124 \mathrm{~g} / \mathrm{mol}$
TREAT
*P=31.0g
$\mathrm{P}_{4}=31.0 \mathrm{~g} \times 4$
White phosphorus is tetratomic $\left(\mathrm{P}_{4}\right)$ and has an atomic mass of
31.0×4

13. If you have $\mathbf{4 . 0 \times 1 0 ^ { 2 3 }}$ lithium oxide molecules, how many moles is this equivalent to?

4.0×10^{23} molecules $\times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { molecules }}=$

$$
6.6 \times 10^{45} \mathrm{~mol} \mathrm{Li} i_{2} \mathrm{O}
$$

TRICK
The division was performed incorrectly, or perhaps the person didn't know how to correctly use their calculator to input these numbers with the powers of 10 .
They should learn how to use their "EXP" or "EE" button!!!!
CORRECTION:

$$
4.0 \times 10^{23} \text { molecules } \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { molecules }}=0.66 \mathrm{~mol} \mathrm{Li} i_{2} \mathrm{O}
$$

14. A 45.09 g sample of solid magnesium phosphate contains how many moles?
$45.09 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{262.9 \mathrm{~g}}=0.1715 \mathrm{~mol} \mathrm{Mg} 3\left(\mathrm{PO}_{4}\right)_{2}$

TREAT

15. What is the number of atoms (total) in 21.9 g of calcium oxalate?
$21.9 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{128.1 \mathrm{~g} \mathrm{CaC} \mathrm{C}_{4}} \times \frac{7 \mathrm{atoms}}{1 \mathrm{~mol}}=1.20$ atoms total TRICK
*Because:
$\mathrm{Ca}=40.1$
$C=12.0$ (2)
$\mathrm{O}=16.0$ (4)
$=128.1 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4}$
CORRECTION: We forgot 1 step (missing)

$$
\begin{aligned}
21.9 \mathrm{~g} \times & \frac{1 \mathrm{~mol}}{128.1 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4}} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}} \\
& \times \frac{7 \text { atoms }}{1 \text { molecule }}=7.2 \times 10^{23} \text { atoms total }
\end{aligned}
$$

