SAMPLE CALCULATIONS for STP and RTP ANSWER KEY

Watch your sig figs!

1. How many moles of ozone occupy a volume of 3.36 L at STP?
$3.36 \mathrm{LX} 1 \mathrm{~mol}=0.150 \mathrm{~mol}$ Did you know that Ozone is O_{3} ? 22.4 L
0.150 mol (mol is the short form for mole or moles) ©
2. What is the mass of 575 L of ammonia gas at RTP?
$575 \mathrm{LX} 1 \mathrm{~mol} X 17.031 \mathrm{~g} \mathrm{NH}_{3}=399.707 \mathrm{~g}$
$24.5 \mathrm{~L} \quad 1 \mathrm{~mol}$
$=400 . g$ or $4.00 \times 10^{2} g(3$ sig figs $)$
3. What is the volume occupied by 0.125 g of H 2 S gas at STP?
$0.125 \mathrm{gX} 1 \mathrm{~mol} \quad \mathrm{X} 22.4 \mathrm{~L}=0.0822 \mathrm{~L}$ $34.082 \mathrm{~g} \mathrm{H} 2 \mathrm{~S} \quad 1 \mathrm{~mol}$
4. What mass of carbon dioxide occupies a volume of 1.05 L at RTP?
1.05 LX 1 mol X $44.009 \mathrm{~g} \mathrm{CO2}=1.89 \mathrm{~g}$ $24.5 \mathrm{~L} \quad 1 \mathrm{~mol}$

SAMPLE CALCULATIONS for STP and RTP ANSWER KEY page two
5. How many oxygen atoms are present in 0.12 L of nitrogen dioxide gas at STP?
.12L L NO2 X 1 mol X 6.02X10 ${ }^{23}$ molecules NO2 X $2^{\text {" }} \mathrm{O}$ " atoms $22.4 \mathrm{~L} 1 \mathrm{~mol} 1 \mathrm{NO}_{2}$ molecule
$=6.4 \times 10^{21} \mathrm{O}$ atoms
The question asks for \# of atoms, yet gives the original volume of the MOLECULES.
This is why we need that final multiplication factor in our calculation
6. What is the density of chlorine gas at RTP?

We know that Cl_{2} is $70.906 \mathrm{~g} / \mathrm{mol}$ and we know that RTP is 24.5 L/ mole

Arrange these two pieces of information so that the units will cancel:
$\frac{70.906 \mathrm{~g} \mathrm{X}}{1 \mathrm{~mol}} \underset{24.5 \mathrm{~mol}}{24}=2.89 \mathrm{~g} / \mathrm{L}$

Density is measured as MASS over VOLUME. Units are g/L (sometime g/mL)

SAMPLE CALCULATIONS for STP and RTP ANSWER KEY page three

7. What is the density of acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ at $0^{\circ} \mathrm{C}$ and 760 mmHg ?
We know that $0^{\circ} \mathrm{C}$ is the temperature condition for STP
Also, 760 mmHg is equivalent to 1 atm (1 atmosphere) which is also equivalent 101.3 kPa (the pressure condition for STP) We can also calculate the molar mass of $\mathrm{C}_{2} \mathrm{H}_{2}$ to be $26.238 \mathrm{~g} / \mathrm{mol}$
Arrange these two pieces of information so that the units will cancel:
$26.038 \mathrm{~g} \mathrm{C} 2 \mathrm{H} 2 \mathrm{X} 1 \mathrm{~mol}=1.16 \mathrm{~g} / \mathrm{L}$
$1 \mathrm{~mol} \quad 22.4 \mathrm{~L}$
8. Identify the gaseous element with a density of $1.63 \mathrm{~g} / \mathrm{L}$ at RTP.
Arrange these two pieces of information so that the units will cancel:
1.63 g X $24.5 \mathrm{~L}=39.9 \mathrm{~g} / \mathrm{mol}$ THIS IS ARGON GAS!
$1 \mathrm{~L} \quad 1 \mathrm{~mol}$
9. Calculate the number of carbon atoms in 35 L of C 3 H 8 (propane) gas at
RTP.
35 LX1mol X 6.02×10^{23} molecules C3H8 X 3 Catoms
$24.5 \mathrm{~L} \quad 1 \mathrm{~mol}$
1 C 3 H 8 molecule
$=2.6 \times 10^{24} \mathrm{C}$ atoms

SAMPLE CALCULATIONS for STP and RTP ANSWER KEY page four

10. What if question 9 asked for sodium bicarbonate instead of C 3 H 8 ?
Would the question be done differently if it was an ionic
"compound" versus a covalent molecule?
No, the question would not be done differently. You calculate the number of atoms in the same regardless of an ionic compound or covalent molecule.
\# atoms OR \# atoms ionic cpd covalent molecule
11. What volume will 5.25×10^{22} molecules of methane occupy at STP?
5.25×10^{22} molecules $X \quad 1 \mathrm{~mol} \quad$ X $22.4 \mathrm{~L}=1.95 \mathrm{~L}$
6.02×10^{23} molecules 1 mol
12. Gold has a density of $19.30 \mathrm{~g} / \mathrm{mL}$. If your brick of gold occupies a volume of $645 \mathrm{~cm}^{3}$, how many atoms of gold are in your brick?
Keep in mind that $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$.
$645 \mathrm{~cm}^{3} \times 1 \mathrm{~mL} \mathrm{X} 19.30 \mathrm{~g} \times 1 \mathrm{~mol} \times 6.02 \times 10^{23}$ Auatoms $\mathrm{cm}^{3} \quad \mathrm{~mL} \quad 196.967 \mathrm{gAu} \quad 1 \mathrm{~mol}$
$=3.80 \times 10^{25}$ Au atoms

SAMPLE CALCULATIONS for STP and RTP ANSWER KEY page five
13. The density of oxygen gas at STP is $1.43 \mathrm{~g} / \mathrm{L}$. If you have 7.8 g of the gas, how many molecules of oxygen gas are in your sample?
$7.8 \mathrm{~g} \quad \mathrm{X} \underset{1.43 \mathrm{~g}}{1 \mathrm{~L}} \quad \mathrm{X} \underset{22.4 \mathrm{~L}}{1 \mathrm{~mol}} \quad \mathrm{X} \underset{1 \mathrm{~mol}}{6.02 \times 10^{23} \mathrm{O} 2 \text { molecules }}$
$=1.5 \times 10^{23}$ molecules
14. A sealed container holds 5.0 L of a gas. The gas has a mass of 6.25 g . What is the molar mass of this gas at STP?
$5.0 \mathrm{LX} 1 \mathrm{~mol}=0.22$ moles
22.4 L

Now I am stuck. I got to the MOLE but where do I go now?
Well, they told me I have 625 g , and I have figured out that 5.0 L is also equivalent to 0.22 moles

WAIT! Isn't grams divided by moles just the molar mass?
Then I could just take the given mass and divide by the moles I calculated:
$6.25 \mathrm{~g} / 0.22$ moles
IN other words
$6.25 \mathrm{~g}=28 \mathrm{~g} /$ mole \ldots. . which would be N_{2} gas!
0.22 moles

