My "ultimate design project"

Nothing special

The first drafts for the design of "the teapot"

Basic 3D shapes

Yay! The formulas!

Shape	Forum SA	Formula V
Cylinder	$s a=2 \pi r^{2}+2 \pi r h$	$v=\pi \times 2 \times h$
Sphere	$s a=4 \times \pi \times r^{2}$	$v=\frac{4}{3} \pi r^{3}$
Cone	$s a=\pi \times r^{2}+\pi \times r \times l=\pi \times r(l+r)^{2}$	$v=\frac{1}{3} \times \pi \times r^{2}$
-		
Cube	$s a=6 x a^{2}=2 \times l \times w+2 \times l \times h+2 \times h \times w$	$v=a^{3}=l \times w \times h$

And with the actual math.

Shape	Surface area Equation	Volume equation	Ratio
Cylinder	$\begin{aligned} & s a=2 \times \pi \times 11.86^{2}+2 \times \pi \times 11.86 \times 10 \\ & s a=2,512.8 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & v=\pi \times 2 \times 10 \\ & v=62.8 \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & R=2512: 62.8 \\ & R=2,512 \div 62.8 \\ & R=40: 1 \end{aligned}$
Sphere	$\begin{aligned} & s a=4 \times \pi \times 37.5^{2} \\ & s a=17671.5 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & v=\frac{4}{3} \times \pi \times 37.5^{3} \\ & v=220887.7 \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & R=17,671.5: 220,887.7 \\ & R=17,671.5 \div 220887.7 \\ & R=0.1: 1 \end{aligned}$
Cone	$\begin{aligned} & s a=\pi \times 35(40.31+35)^{2} \\ & s a=17,817.8 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & v=\frac{1}{3} \times \pi \times 35^{2} \\ & v=1,269.9 \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & R=17817.8: 1269 \\ & R=17,817.8 \div 1269 \\ & R=14.0: 1 \end{aligned}$
$F: \because \sim \sim N A+C)$			
Cube	$\begin{aligned} & s a=6 \times 8^{2}=2 \times 8 \times 8+2 \times 8 \times 8+2 \times 8 \times 8 \\ & s a=64 m^{2} \end{aligned}$	$\begin{aligned} & v=8^{3}=8 \times 8 \times 8 \\ & v=512 \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} & R=64: 512 \\ & R=64 \div 512 \\ & R=0.125 \end{aligned}$

Cylinder

Shape	Surface area Equation	Volume equation	Ratio
Cylinder	$s a=2 \times \pi \times 11.86^{2}+2 \times \pi \times 11.86 \times 10$	$v=\pi \times 2 \times 10$	$R=2512: 62.8$
	$s a=2,512.8 \mathrm{~mm}^{2}$	$v=62.8 \mathrm{~mm}^{3}$	$R=2,512 \div 62.8$
			$R=40: 1$

Sphere

Shape	Surface area Equation	Volume equation	Ratio
Sphere	$s a=4 \times \pi \times 37.5^{2}$ $s a=17671.5 \mathrm{~mm}^{2}$	$v=\frac{4}{3} \times \pi \times 37.5^{3}$ $v=220887.7 \mathrm{~mm}^{3}$	$R=17,671.5: 220,887.7$ $R=17,671.5 \div 220887.7$ $R=0.1: 1$

Those 2 shapes together

make "the cup" wo

TOTAL FOR CUP:	Surface area:	Volume:	Ratio:
(cylinder +sphere)	$20,184.3 \mathrm{~mm}^{2}$	$220,950.5 \mathrm{~mm}^{3}$	$20,184.3: 220,950.5$
			$0.1: 1$

ractu Cone

Shape	Surface area Equation	Volume equation	Ratio
Cone	$s a=\pi \times 35(40.31+35)^{2}$ $s a=17,817.8 \mathrm{~mm}^{2}$	$v=\frac{1}{3} \times \pi \times 35^{2}$ $v=1,269.9 \mathrm{~mm}^{3}$	$R=17817.8: 1269$ $R=17,817.8 \div 1269$ $R=14.0: 1$

Cube

Shape	Surface area Equation	Volume equation	Ratio
Cube	$s a=6 \times 8^{2}=2 \times 8 \times 8+2 \times 8 \times 8+2 \times 8 \times 8$ $v=8^{3}=8 \times 8 \times 8$ $s a=64 m^{2}$	$R=64: 512$ $v=512 \mathrm{~mm}^{3}$	$R=64 \div 512$ $R=0.125: 1$

Number
change
Quncerats
Croissant Cube - LITTLE PEBBLES
Kyudeniu in stock • Brand: LITTLE PEBBLES

These 2 shapes together

make "the lid"

Shape	Surface area Equation	Volume equation	Ratio
TOTALS FOR LID: (cone+cube)	Surface area:	Volume:	Ratio:
	$17,881.8 \mathrm{~mm}^{2}$	$1,781.9 \mathrm{~mm}^{3}$	$17881.8: 1781,9$

And when looking at it all together!

In conclusion...

- Goal: optimize volume= ended up having more surface area
- Was never 3D printed

The end

