My "ultimate design project"

Nothing special

The first drafts for the design of "the teapot"

Basic 3D shapes

Yay! The formulas!

Shape	Forum SA	Formula V
Cylinder	$sa = 2\pi r^2 + 2\pi rh$	$v = \pi \times 2 \times h$
Sphere	$sa = 4 \times \pi \times r^2$	$v = \frac{4}{3}\pi r^3$
Cone	$sa = \pi \times r^2 + \pi \times r \times l = \pi \times r(l+r)^2$	$v = \frac{1}{3} \times \pi \times r^2$
Cube	$sa = 6xa^{2} = 2 \times l \times w + 2 \times l \times h + 2 \times h \times w$	$v = a^3 = l \times w \times h$

And with the actual math...

Shape	Surface area Equation	Volume equation	Ratio
Cylinder	$sa = 2 \times \pi \times 11.86^{2} + 2 \times \pi \times 11.86 \times 10$ $sa = 2,512.8m m^{2}$	$v = \pi \times 2 \times 10$ $v = 62.8m m^3$	R = 2512 : 62.8 $R = 2,512 \div 62.8$ R = 40 : 1
Sphere	$sa = 4 \times \pi \times 37.5^2$ $sa = 17671.5m m^2$	$v = \frac{4}{3} \times \pi \times 37.5^{3}$ $v = 220887.7m m^{3}$	R = 17,671.5 : 220,887.7 $R = 17,671.5 \div 220887.7$ R = 0.1 : 1
Cone	$sa = \pi \times 35(40.31 + 35)^2$ $sa = 17,817.8m m^2$	$v = \frac{1}{3} \times \pi \times 35^{2}$ $v = 1,269.9mm^{3}$	R = 17817.8 : 1269 $R = 17,817.8 \div 1269$ R = 14.0:1
			30000000000000000000000000000000000000
Cube	$sa = 6 \times 8^2 = 2 \times 8 \times 8 + 2 \times 8 \times 8 + 2 \times 8 \times 8$ $sa = 64mm^2$	$v = 8^3 = 8 \times 8 \times 8$ $v = 512mm^3$	R = 64 : 512 $R = 64 \div 512$ R = 0.125

Cylinder

Shape	Surface area Equation	Volume equation	Ratio
Cylinder	$sa = 2 \times \pi \times 11.86^{2} + 2 \times \pi \times 11.86 \times 10$ $sa = 2,512.8m m^{2}$		R = 2512 : 62.8 $R = 2,512 \div 62.8$ R = 40 : 1

Sphere

	Shape	Surface area Equation	Volume equation	Ratio
S		$sa = 1/6/1.5mm^2$	$v = \frac{1}{3} \times \pi \times 37.5^{\circ}$	R = 17,671.5 : 220,887.7 $R = 17,671.5 \div 220887.7$ R = 0.1 : 1
_		25(40.2125)?	1	D 15015 0 1000

Those 2 shapes together make "the cup" when showing the cup" we have successions.

TOTAL FOR CUP: (cylinder +sphere)

Surface area: $20,184.3m\,m^2$

Volume: $220,950.5m m^3$

Ratio:

20,184.3 : 220,950.5

0.1:1

ice cream Cone

Shape	Surface area Equation	Volume equation	Ratio
Cone	$sa = \pi \times 35(40.31 + 35)^2$ $sa = 17,817.8m m^2$	$v = \frac{1}{3} \times \pi \times 35^{2}$ $v = 1,269.9mm^{3}$	R = 17817.8 : 1269 $R = 17,817.8 \div 1269$ R = 14.0:1

Cube

Shape	Surface area Equation	Volume equation	Ratio
Cube	$sa = 6 \times 8^2 = 2 \times 8 \times 8 + 2 \times 8 \times 8 + 2 \times 8 \times 8$ $sa = 64mm^2$	$v = 512mm^3$	R = 64 : 512 $R = 64 \div 512$ R = 0.125 :

These 2 shapes together make "the lid"

Shape	Surface area Equation	Volume equation	Ratio
TOTALS FOR LID: (cone+cube)	Surface area: 17,881.8 <i>m m</i> ²	Volume: 1,781.9 <i>m m</i> ³	Ratio: 17881.8 : 1781,9 10 : 1

And when looking at it all together!

In conclusion...

- Goal: optimize volume= ended up having more surface area
- Was never 3D printed

The end